

DLL-003-016407

Seat No.

M. Sc. (Mathematics) (Sem. IV) (CBCS) Examination

May / June - 2015

Maths CMT - 4001 : Linear Algebra

(New Course)

Faculty Code: 003 Subject Code: 016407

Time: Hours] [Total Marks: 70

Instructions:

- (1) Answer all the questions.
- (2) Each question carries 14 marks.
- (3) Unless otherwise specified, vector spaces consdiered here are finite dimensional.
- 1. Answer any Seven

 $7 \times 2 = 14$

- (a) Define an algebra over a field F and illustrate it with an example.
- (b) When is an element $\lambda \in F$ said to be a characteristic root of $T \in A_F(V)$? Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be given by T(1,0) = (1,1) and T(0,1) = (1,-1). Determine the characteristic roots of T.
- (c) Let $n \geq 1$ and $A \in F_n$. Define tr(A). Verify that the map $tr: F_n \to F$ is linear.
- (d) State Cramer's rule.
- (e) Let (V, <, >) be an inner product space over C. If a linear transformation $T: V \to V$ is unitary, then prove that $T^*T = Id_V$.
- (f) Let $T \in A_F(V)$. When is a subspace W of V said to be invariant under T? Verify that $T^2(V)$ is a subspace of V and is invariant under T.
- (g) Let $T \in A_F(V)$ be nilpotent. Define the concept of the invariants of T.
- (h) Let V be a vector space over \mathbf{R} . Let $f: V \times V \to \mathbf{R}$ be bilinear. When is f said to be skew-symmetric? If f is skew-symmetric, then show that f(v,v)=0 for any $v \in V$.
- (i) Let V be a vector space over a field F and let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be a basis of V over F. Let $T \in A_F(V)$. Define $[T]_{\mathcal{B}}$, the matrix of T in \mathcal{B} . For any $T, S \in A_F(V)$, verify that $[T + S]_{\mathcal{B}} = [T]_{\mathcal{B}} + [S]_{\mathcal{B}}$.
- (j) Let $n \ge 1$ and $A \in F_n$. Define the secular equation of A. Let $A \in F_3$ be any diagonal matrix. Determine the secular equation of A.
- 2. Answer any Two

 $2 \times 7 = 14$

- (a) Let V be a finite-dimensional vector space over a field F. Let $T \in A_F(V)$. Prove the following:
- (i) If T is invertible, then T^{-1} is a polynomial expression in T over F.

- (ii) If T is singular, then there exists a nonzero $S \in A_F(V)$ such that ST = TS = zero map from V into V.
- (b) If A is an algebra, with unit element, over a field F, then prove that A is isomorphic to a subalgebra of $A_F(V)$ for some vector space V over F.
- (c) If $T \in A_F(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.
- 3. (a) Let $\lambda \in F$ be a characteristic root of $T \in A_F(V)$. Prove that for any polynomial $q(X) \in F[X]$, $q(\lambda)$ is a characteristic root of q(T).
- (b) If V is finite-dimensional over F and if $T \in A_F(V)$ is onto, then prove that T is regular.
- (c) If $T \in A_F(V)$, then prove that tr(T) is the sum of the characteristic roots of T (using each characteristic root as often as its multiplicity).

OR

- 3. (a) Let $A \in F_n$. If two rows of A are equal, then prove that det A = 0. 5 (b) Let (V, <, >) be a finite-dimensional inner product space over C. Let $T \in A_{\mathbf{C}}(V)$. Then given $v \in V$, prove that there exists an element $w \in V$, depending on v and T such that $\langle T(u), v \rangle = \langle u, w \rangle$ for all $u \in V$. 5 (c) Let V be as in (b). Let $T, S \in A_{\mathbf{C}}(V)$. Prove that $(ST)^* = T^*S^*$. 4.
- 4. Answer any Two

 $2 \times 7 = 14$

- (a) Let $T \in A_F(V)$ be nilpotent and let n_1 be its index of nilpotence. Let $v \in V$ be such that $T^{n_1-1}(v) \neq 0$. Let V_1 be the subspace of V spanned by the vectors $v, T(v), \ldots, T^{n_1-1}(v)$. Then prove the following:
- (i) $dim_F(V_1) = n_1$.
- (ii) If $u \in V_1$ is such that $T^{n_1-k}(u) = 0$ for some k with $0 < k \le n_1$, then $u = T^k(u_0)$ for some $u_0 \in V_1$.
- (b) Let (V, <, >) be a finite-dimensional inner product space over \mathbb{C} . Let $T \in A_{\mathbb{C}}(V)$. Prove that T is unitary if and only if T maps an orthonormal basis of V into an orthonormal basis of V.
- (c) Let $f: V \times V \to F$ be a bilinear form on an *n*-dimensional vector space V over F. If \mathcal{B} , \mathcal{B}' are any two basis of V over F, then prove that there exists an invertible matrix $C \in F_n$ such that $[f]_{\mathcal{B}'} = C[f]_{\mathcal{B}}C'$.
- 5. Answer any Two

 $2 \times 7 = 14$

- (a) Prove that any $A \in F_n$ satisfies its secular equation.
- (b) Let (V, <, >) be as in 4(b). If $N \in A_{\mathbb{C}}$ is normal, then prove that there exists an orthonormal basis of V consisting of characteristic vectors of N, in which the matrix of N is diagonal.
- (c) Let V be a finite-dimensional vector space over a field F and let $T \in A_F(V)$. Prove that T is invertible if and only if the constant term of the minimal polynomial for T over F is nonzero.
- (d) (i) Let $A, B \in F_n$. Prove tr(AB) = tr(BA).
- (ii) Let F be a field of characteristic 0. If $T, S \in A_F(V)$ are such that ST TS commutes with S, then prove that ST TS is nilpotent.